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1. INTRODUCTION

Let f(x) be a real-valued function defined on the closed interval [-1, l].
We shall assume throughout this paper thatfis an even function and that

o = f(O) ~ f(x) ~ f(1) = 1, -l ~x~l.

We consider the problem of determining the best uniform approximation
to f on [-1, 1] by linear fractional transformations

U()=ax+b
x ex + d .

Here x is a real variable and a, b, c and d are complex numbers (we exclude
once and for all the case in which both e and d are zero). In general such a
transformation U takes values in the extended complex plane. If U takes
only (extended) real values, we shall say that U is a real transformation; if
U(x) = U(-x) for all x then U will be called synunetric (as usual, z denotes
the complex conjugate of z).
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LINEAR FRACTIONAL TRANSFORMATIONS

For each given function lour problem is to minimize the quantity

II U - 11100 = sup 1U(x) - f(x)j
-1<",<1
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over various classes of linear fractional transformations U. Specifically,
we want to determine the degrees of approximation

ER(f) = inf{11 U - 11100: U is real},

Es(f) = inf{11 U - 11100: U is symmetric},

Ed!) = inf{11 U - 11100: U is arbitrary},

and to identify the extremal transformations whenever they exist.
In the next section we obtain the inequalities

(LI)

Thus ER(f) is completely determined for allf However, little seems to have
been previously known about Ec(f) or EsC!) even when 1 is well behaved.
In fact, the present research arose from questions posed by R. S. Varga
(Conference on Approximation Theory, University of California, Riverside,
February, 1976) stemming from his work with E. B. Saff ([2], [3], [4]). One
aspect of their work regards approximating real-valued functions on real
intervals by complex rational functions (cf. [3]). For example, they were
interested in determining Ed];), were Ilx) = x2• Saff and Varga have
determined by example in [3] that

EC(f2) ~ y2 - 1 = .4142 ...,

so that one does indeed do better than 1/2 by considering complex linear
fractional transformations.

From more general results developed below we shall show that the degree
of symmetric approximation is given by

ES(f2) = (4/27)1/2 = 0.38490018 ... ,

and that this degree of approximation is attained by exactly two symmetric
conjugate transformations. This provides a nontrivial upper bound for
Ec(fJ, but we suspect that much more is true. Namely, that any function1
can be approximated as well by symmetric transformations as by arbitrary
ones. Thus we make the following conjecture.

CONJECTURE. For any functionj, Ec(f) = EsC!).
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In the present paper we shall consider mainly approximation by symmetric
transformations. Once the preliminary results of Section 2 have been
established, the remainder of the paper is divided into three parts.

In Section 3 we obtain a lower bound for Es(f) by first approximatingf(x)
on the finite set Z(w) = {-I, -w, w, I}, where °< w < 1. Corresponding
to each w in the open interval (0, 1) we define a particular symmetric transfor
mation, denoted by V(x;/, w), which is a good approximation tofon Z(w).
Specifically, for each x E Z(w), °< w < 1, we have

where

I V(x;/, w) - f(x) I = D(/, w),

~(j' ) = W
1

/
2
(1 - few»~

o ,w l+w'

(1.2)

(1.3)

Our first result (Theorem A) shows that, modulo complex conjugation, no
other symmetric transformation produces as good an approximation to f
on Z(w).

THEOREM A. Let f be given, let w E [0, I] be fixed and suppose that V is
any symmetric transformation. Then

max I Vex) - f(x) I ~ D(/, w).
XEZ(W)

(1.4)

If wE (0, 1) then equality holds in (1.4) if and only if Vex) = V(x;/, w) or

Vex) = V(x;/, w).

Next we define

J(f) = sup D(/, w).
O<w<l

From Theorem A we obtain the following lower bound.

(1.5)

THEOREM B. Let f be given and let V be any symmetric transformation.
Then

I[ V - fl[oo ~ max(1(4, J(f»

and hence

Es(f) ~ max(l(4, J(f».

In Section 4 we determine a class of functions I which satisfy

EsC!) = J(f) = II V - 11100

(1.6)

(1.7)

(1.8)
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for some symmetric transformation U. In order to achieve this we shall need
to impose some restrictions on f

CONDITION 1. The function f is continuous on [-1, 1], is differentiable on
(0, 1) and f'(x) );: °for each x E (0, 1).

One consequence of the continuity of f is that (1.8) can hold only if the
supremum in (1.5) is attained at a unique point w = Q in (0, 1). Hence,
we can restrict our attention to those functions f for which the following
condition holds.

CONDITION 2. There exists a unique point Q E (0, 1), depending only on f,
such that L1(f) = S(f, Q).

We shall show that Condition 2 is satisfied if, for instance,jis continuous
and convex (cf. Theorem 4.2), or if f(x) = I x I" for any ex > °
(cf. Theorem 5.1).

We now state the main result of Section 4.

THEOREM C. Let f be a function satisfying Conditions 1 and 2 and let U be
any symmetric transformation. Suppose in addition that the function

(x2 + Q)2 f'(x)
X -+ -0.-__-'----"----'---

X

is increasing on (0, 1). Then 1/4 < L1(f) and

II U - fll", );: L1(f)

(1.9)

(1.10)

with equality in (1.10) if and only if U(x) = U(x;f, Q) or U(x) = U(x;f, Q).
In particular we have Ein = L1(f).

In the final section of the paper we consider approximation of the special
class of functions fcx(x) = I x I", where ex > 0. It is easily verified that
Conditions 1 and 2 hold for all ex > °and we denote the corresponding value
of Q by Q". If ex );: 2 then fcx also satisfies the additional hypothesis in
Theorem C and thus its degree of symmetric approximation and the precise
extremal transformations are completely determined. The case ex = 2 gives
our partial answer to Saff and Varga's original questions concerning EC<f2)'

If°< ex < 2 then the hypothesis in Theorem C fails to hold. Nevertheless
the conclusion of Theorem C continues to hold for certain values of ex. Let
K = 1.4397589'" be the unique solution in the interval (1, 00) of the
equation
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(2K _ 1)2K-l = _K_.
K-l (1.11)

We prove the following result in Section 5.

THEOREM D. Let fix) = I x I~, where ex > 0 and let U be any symmetric
transformation.

(i) If K :s;; ex then 1/4 < Ll(j;.) and

II U - .fc, 1100 ~ Ll(.fc,)

with equality if and only if U(x) = U(x;.fc" Q~) or U(x) = U(x;.fc" Qa ). In
particular Es(.fc,) = Ll(.fc,).

(ii) If0 < ex < K then

II U - .fc, 1100 > max(I/4, Ll(.fc,». (1.12)

At the end of Section 5 we give (Table 1) some numerical values for Qa and
Ll(ja)' Theorem 5.4 states that the constant K is transcendental.

We have been informed by A. Ruttan [3] that he has proved the conjecture
Ed/) = Es(f) in certain cases. In generalizing our results he has shown that
the inequalities (1.4), (1.6), (1.10) and (1.12) of Theorems A, B, C, and D,
respectively, are valid for any complex linear fractional transformation U.
Thus, in the instances where we have explicitly determnied Eil), it is true
that Ed/) = Es(f). However, in the class of general complex linear frac
tional transformations the exact extremal transformations are still unknown.
For instance, under the hypotheses of Theorems C or D it is yet undetermined
whether or not there are non-symmetric transformations with the same degree

of approximations as U(x;f, Q) and U(x;f, Q). Indeed, Ruttan proves the
existence of an even continuous real valued function f on [-1, I] with a
continuum of best approximations from the class of linear fractional
transformations.

In view of the results presented here it is natural to ask whether similar
phenomena occur when approximation by rational functions of higher orders
is allowed. In this connection, E. B. Saff and R. S. Varga [3] have recently
constructed examples where the approximation by complex rational functions
(of class Rn •n , n = 1,2,...) is, once again, better than that attainable in the
real situation. The determination of the degree of approximation in such cases
remains an interesting open problem.

Our initial investigations (at the California Institute of Technology) made
use of a computer program developed by H. F. Bohnenblust. We wish to
thank Professors Bohnenblust, R. A. Dean and K. W. Holladay for their
valuable assistance in this regard.
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2. PRELIMINARIES
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(2.1)

We begin with a technical lemma in order to establish the estimates in (1.1).
The lemma has a simple geometric proof which we omit.

LEMMA 2.1. Let f be given and suppose U(x) = (ax + b)/(ex + d)
satisfies one of the following conditions:

(i) ad - be = 0,

(ii) d = 0,

(iii) e = 0,

(iv) die is real and Idje I > l.

Then for any w E [0, 1]

max I U(x) - f(x)1 ~ t(l - few»~,
xEZ(w)

with equality if and only if U(x) == !(1 +few»~.

If U is a real transformation then it maps [-1, 1] into the realline. This
observation leads to the following theorem.

THEOREM 2.2. Let f be given and let U be any real transformation. Then
II U - fll", ~ 1/2 with equality if and only if U(x) == 1/2.

THEOREM 2.3. Let f be given and let U be any transformation. Then

II U - fll", > 1/4.

Proof. Let U(x) = (ax + b)/(ex + d) and suppose that

II U - fll", ~ 1/4.

(2.2)

(2.3)

Letting w = °in (2.1) we see that none of the conditions (i)-(iv) ofLemma 2.1
can hold. Also, if die is real and I die I ~ 1, then II U - fll", = 00. Hence,
ad - be =1= 0, e =1= 0, d =1= 0 and dje is not real, implying U maps [-1, 1]
bijectively onto the arc of a circle. This geometric fact evidently contradicts
(2.3) and the proof is complete.

Whenfis continuous the degree of approximation Ec(f) is always attained
[6, p. 351]. Hence, 1/4 < Ec(f). However, if continuity is dropped then
Edf) may equa11/4. (For an example, let f(x) = 1/2 except for f(O) = 0,
f(±I) = 1. Consider the transformations U~(x) = (3x - iTJ)/(4x - 4iTJ) for
0<"1 < 1/2.)

For the symmetric transformations that map [-1, 1] onto an arc of a
circle there is a convenient change of parameters.
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THEOREM 2.4. U(x) = (ax + b)j(cx + d) is a symmetric transformation
satisfying ad - bc =1= 0, c =1= 0 and d =1= 0 if and only if U has the form

(
X + it )U(x) = s + r .,
x - It

(2.4)

where r, sand t are uniquely determined real numbers with rand t nonzero.

Proof Straightforward.

3. A LOWER BOUND FOR Es(f)

For each given function f and each wE (0,1) we denote by U(x;f, w)
the symmetric transformation defined as follows. If few) = 1 then U(x;f, w)
is the constant transformation 1. If 0 ~ few) < 1, then

x + it
U(x;f, w) = S + r--. ,

x -It

where the parameters r, sand t depend onfand w according to

_ (f, ) - (1 - w)(1 - few))
r - r ,w - 2(1 + w) ,

_ (f, ) - 1 + few)
s-s,w- 2 '

t = t(f, w) = w1j2•

(3.1)

(3.2)

We remark that if 0 < w < 1, then (1.2) can be verified for the transfor
mation U(x;f, w) by a trivial calculation.

ProofofTheoremA. We may assume that 0 < w < 1 and 0 <few) < 1
as (1.4) is obvious in the other cases. From (1.3) we observe that o(f, w) <
HI - few)). Hence, if U is any symmetric transformation satisfying

max I U(x) - f(x) I ~ o(f, w),
XEZ(W)

then Lemma 2.1 and Theorem 2.4 show that

(
X + ito)U(x) = So + ro .,
x - Ito

(3.3)

(3.4)

where ro ,so, and to are real with roand to nonzero. The theorem will therefore
be proved if we show that ro = r, So = s, and (to)2 = t 2 where r, sand tare
given by (3.2). This shows that U(x) = U(x;/, w) or Vex) = U(x;/, w).



LINEAR FRACTIONAL TRANSFORMATION'S

We introduce the perturbations ~, r; and ~ given by
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So = S + ~,

Then ~, TJ and ~ are real with

'0 = , + r;, (3.5)

(2 + ~ = 00 + g > O.

From (3.3) we have

Expanding (3.7) and using (3.4) we obtain the inequality

Substituting the values from (3.2) and (3.5) we have

(3.6)

(3.7)

w21f(w) - 1 + wf(w) _ ~ _ TJl2 + (00 + g) If(w) _ 00 + few) _ ,+ TJl2
1+00 ~ 1+00 ~

~ 82002+ 02(00 + g).

Then using (1.3) we obtain

W 2{W-1{28 + , + 7l}2 + (00 + g){W1{28 + , - TJ}2

~ 82002 + 02(00 + g). (3.8)

Similarly, starting from

we deduce the inequality

{w1f28 - , - 7l}2 + (00 + g){W-1{28 - ~ - 7]}2

~ 82 + 82(00 + g). (3.9)

When (3.9) is multiplied through by 00 and then added to (3.8), the resulting
inequality is

(3.10)

The left-hand side of (3.10) is a quadratic form in t and TJ whose discriminant
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16w(w + g) is strictly positive by (3.6). The form is therefore positive definite
and so the only solution to (3.10) is ~ = TJ = O. Hence we have ro = rand
So = s. Furthermore, from the inequality

and (3.2) we obtain

and so w :(; (toY On the other hand from

we have

and thus (to)2 :(; w. We conclude that (to)2 = l1) = t 2• This completes the
proof.

Theorem B is now a simple corollary of Theorem A (and (2.2».

4. EXACTNESS OF THE LOWER BOUND

The result of the two preceding sections require nothing more of the
function f than that it satisfy the standing hypotheses imposed in the first
paragraph of Section 1. In the present section, however, continuity or
differentiability will often be needed. Once continuity of f is required, the
next result shows that Condition 2 of Section 1 is necessary for (1.8) to hold.

THEOREM 4.1. Let f be continuous on [-1, 1] and suppose that there exists
a symmetric transformation U such that II U - f11", = ~(f). Then

(i) there exists a unique point DE (0, 1) such that ~(f) = o(f, D),

(ii) either U(x) = U(x;f, D) or U(x) = U(x;f, Q).

Proof The continuity of f implies that o(f, w) is a continuous function
of l1) on [0,1]. Hence o(f, w) attains tis supremum Ll(f) at some point
w = D in [0, 1]. But o(f, w) = 0 when w = 0 or w = 1 and yet o(f, w)
clearly assumes some positive values on (0, 1). Hence we have DE (0, 1).
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From Theorem A we have

Ll(f) = II U - /[100
~ max I U(x) - f(x)1

xeZ(Q)

~ S(f,.o) = Ll(f).

If follows that

max I U(x) - j(x)l = S(f, .0),
xeZ(Q)
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and so by the uniqueness assertion in Theorem A we must have U(x) =
U(x;f,.o) or U(x) = U(x;f, .0).

If there is a second point .0' E (0, 1) for which Ll(f) = S(f, Q'), then the
same argument shows that U(x) = U(x;f, .0') or U(x) = U(x;f, .0'). Thus,
modulo complex conjugation, the transformations U(x;f,.o) and U(x;f, Q')
coincide. By Theorem 2.4 the parameters r, sand (2 determined by these
transformations must also coincide. In particular,

.0 = t(f, .0)2 = t(f, Q')2 = .0'.

This shows that Q is unique and completes the proof.
We now show that Condition 2 holds whenever/is continuous and convex.

However, convexity is not necessary; in Section 5 we prove thatJ:.(x) = I x I"
satisfies Condition 2 for all Cl > O.

THEOREM 4.2. Suppose / is continuous and convex. Then there exists a
unique point .0 E (0, 1) such that Ll(f) = S(f, .0).

Proof As in the proof of Theorem 4.1 we know that S(f, w) attains its
supremum Ll(f) at some point Q E (0, 1). Suppose that .0' E (0, 1) is distinct
from Q and yet also satisfies Ll(f) = S(f, .0'). Let .oN = !(.Q + .0') and set

(
1 + w)c/>(w) = 1 - w1j2 Ll(f), O<w<I.

Then c/>(Q) = f(Q) and c/>(.Q') = f(.o'). Thus since c/> is strictly concave and
/ is convex we have

ef>(D") > Hc/>(Q) + c/>(Q')}

= !{f(.o) + f(.o')} ~ f(.o")·

But this implies LlU) < S(f, .0"), which is impossible. Hence .0 is unique.
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LEMMA 4.3. Let f satisfy Conditions 1 and 2 and let M(x) be defined by

M(x) = I V(x,f, Q) - f(X)[2.

Then M'(Q) = O.

Proof The differentiability of f implies that the functions D(f, x) and
D(f, X)2 are both differentiable on (0, 1). Moreover, the derivative of D(f, X)2
vanishes at x = Q since S(f, x), and hence 8(1, X)2, attains its maximum at
x=Q.

By Theorem A we have D(f, X)2 ~ M(x) for all x E (0, 1), with equality if
x = Q. Hence for x > Q we obtain

M(x) - M(Q) :> D(f, X)2 - 8(1, Q)2
x-Q ::--- x-Q (4.1)

Since M'(x) exists on (0, 1) we can let x --'>- Q+ in (4.1) and deduce that
M'(Q) ~ O. Similarly, by considering x < Q we find that M'(Q) ~ O.
'ihis completes the proof.

We now consider the proof of Theorem C. For any function f and any
symmetric transformation V, the inequality (LlO) has already been esta
blished in Theorem B. Iffis continuous and equality holds in (LlO). then by
Theorem 4.1 we have either Vex) = V(x;f, Q) or Vex) = V(x;f, Q).
Thus to complete the proof we must show that under the hypotheses of
Theorem C,

M(x) = I V(x;f, Q) - f(X)[2 ~ ,1(/)2 (4.2)

for 0 ~ x ~ 1. We note that Theorem 2.3 then implies that *< ,1(/).
In fact, we shall prove slightly more than (4.2) in the following theorem.

THEOREM 4.4. Let f be a function which satiifies the hypotheses of
Theorem C. Then

(i) the inequality (4.2) holds,

(ii) f satisfies the inequality

o ~ 1 - 2f(Ql/2) + f(Q), (4.3)

(iii) if there is strict inequality in (4.3), then equality occurs in (4.2) if
and only if x = Q or x = 1.

(iv) if equality occurs in (4.3) then Q = 3 - 2 v2 and there exists a
point QoE [0, Ql such that equality occurs in (4.2) if and only ifQo ~ x ~ 1,
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(v) equality occurs in (4.3) and Q o = 0 if and only if

f ( ) = F( ) = 2(2 - \12) x
2

•
x X x2 + 3 _ 2 \12

215

(4.4)

Proof Since 'D(f, w) = W 1 / 2(1 - j(w))/(l + w) takes some positive
values we must have 0 ~ j(Q) < 1. Thus

Ix + it IU(x;f, Q) = s + r .,x - It

where r, sand t are given by (3.2) with w = Q. We then have

M(x) = x2 ~ Q {f(x) - r - S}2 + x2 ~ Q {f(x) + r - S}2.

It will be convenient to introduce the change of variables

A = ,\(x) = X2/(X2 + D),

X = X(A) = (Q,\j(1 - A))1/2.

We then set

g(,\) = f(X(A»)

and

(4.5)

(4.6)

(4.7)

N(A) = M(X(A))

= A{g(A) - r - s}2 + (1 - A){g(A) + r - S}2. (4.8)

Also, we define g = A(D) = Q/(1 + £2) so that 0 < g < 1/2 and the range
o~ x ~ 1 corresponds to 0 ~ A ~ 1 - f

From Theorem A we have

NW = M(Q) = 11(/)2 = M(1) = N(l - g), (4.9)

and from Lemma 4.3,

N'W=O.

There is also a point p E (g, 1 - Dsuch that

N'(p) = o.

(4.10)

(4.11)
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This is easily seen from (4.9) and Rolle's theorem. The inequality (4.2)
which we wish to prove is now equivalent to

0< A < 1 -~. (4.12)

In order to establish (4.12) we shall make a careful examination of the sign
of N'(A) and show that N(A) always assumes its global maximum at A = ~

and 1 -~.
Differentiating (4.7) with respect to A we have for °< A < 1 - ~,

Thus the hypothesis (1.9) implies that g'(A) is non-negative, increasing and
hence continuous. We also deduce that g(A) is convex on [0, 1 - ~]. Since
g(O) = 0, this shows that g(A) can vanish only for those Ain a closed interval
[0,,8] with °<,8 < I -~. We also note that g'(A) = °if and only if
g(A) = 0.

Next we consider the functions

!fi2(A) = g(A) - S + (1 - 2A)r. (4.13)

The derivatives !fi~ = g' and !fi~ = g' - 2r are increasing so both !fil and !fi2
are continuous convex functions on [0, 1 - ~]. From (4.13) we have

and

Hence there exist unique points Al and A2 in (0, 1 - 0 such that

!fi;(A) < °
!fij(A) = °
!fi;(A) > °

if O<.\<Aj,

if A = Aj,

if Aj < A< 1 - ~,

(4.14)

for j = 1,2.
Another consequence of the convexity of g is the inequality

f(Ql/2) = g(1/2) < tg(0 + tg(l - 0

= Hf(Q) + 1) = s, (4.15)
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which is equivalent to (4.3). We now divide the proof into two cases according
to whether equality or inequality occurs in (4.15).

Case I. Suppose g(lj2) < s. Then '\1 > Ij2, and since

lfr2('\I) = g('\I) - S + (l - 2'\I)r

= (l - 2'\I)r < 0,

we must have t < '\1 < '\2' Differentiating (4.8) with respect to ,\ we obtain

(4.16)

Thus N'('\2) = -4rlfrl('\2) < 0, and if ,\ oF '\2 then N'('\) = °if and only if

(4.17)

Now suppose for the moment that we can show that lfrl('\)N2('\) is strictly
decreasing on each of the intervals (0, '\2) and (,\2 , 1 - f). Then on each of
these intervals, the left-hand side of (4.17) is increasing and the right-hand
side is strictly decreasing. It follows that N'('\) has at most one zero in (0, '\J,
which must be g, and at most one zero in (,\2 , 1 - f), which must be p.
This analysis also shows that g'(,\) is less than 2rlfri'\)N2('\) on the set
(0, f) U (,\2 , p), and greater than 2rlfrl('\)N2('\) on the set (g, '\2) U (p, 1 - g).
Hence from-{4.16) we deduce that N'('\) is strictly positive on (0, g), is zero
at'\ = g, is strictly negative on (g, p), is zero at,\ = p, and is strictly positive
on (p, 1 - g). From this we conclude that N('\) can assume its maximum value
only at ,\ = g or ,\ = 1 - g. In view of (4.9), this establishes the desired
inequality (4.12).

Thus it remains only to show that lfrlN2 is strictly decreasing on (0, '\2)
and on ('\2' 1 - ~). From (4.13) we have

~ ( lfrl(,\) ) = (1 - 2'\) g'(,\) + 2(g('\) - s)
d,\ lfr2('\) r (g('\) - s + (l - 2'\)r)2 '

(4.18)

for'\ oF '\2' If g'(,\) = °then g('\) = °and so the right-hand side of (4.18)
is negative, as required. If g'(,\) > 0, we argue as follows. By the mean
value theorem and the fact that g('\I) = s we have

(1 - 2'\) g'(,\) + 2(g(,\) - s)

= (l - 2'\) g'(,\) + 2g'(v)('\ - '\1)' (4.19)

for some v lying between ,\ and '\1 . But g' is increasing so that the right-hand
side of (4.19) is less than or equal to

(l - 2'\) g'(,\) + 2g'(i\)('\ - '\1) = g'(,\)(l - 2'\1)'
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Since A1 > 1/2 we must have g'(A)(l - 2A1) < 0 and thus (4.18) is negative.
This shows that ifi1N2 is decreasing and completes the proof in Case 1.

Case II. Suppose g(lj2) = s. Then A1 = Ij2 and since ifi2(1/2) = 0 we
also have A2 = 1/2. Let A(A) be the linear function

A(A) = (1 - 2A) g~t~-;; + s.

Then A(t) = get) and A(l - t) = gel - f) = 1. Since g is continuous,
convex and

g(lj2) = s = tg(t) + tg(l - t)

we must have g(A) = A(A) at least for t :::;; A :::;; 1 - t. In fact there exists
a smallest real number Ao E [0, tl such that g(A) = A(A) on [Ao , 1 - tl and
(if Ao =1= 0) g(A) > A(A) on [0, .\0). We see from (4.16) that the derivative
N'(A) is linear on [Ao , 1 - t). But N'(f) = 0 = N'(lj2) so that N'(A) is
identically zero on [Ao , 1 - t). Thus N(A) is constant on [Ao , 1 - tl and
hence by (4.9),

(4.20)

If we define Qo = x(Ao) then we have the corresponding result M(x) = J(f)2
for Q o :::;; x .:::;; 1.

If Ao = 0 then (4.20) establishes (4.12). If Ao =1= 0 then for 0 :::;; ,\ < Ao we
have g(A) > A(A), or equivalently,

g(A) - s > get) - s
1 - 2'\ 1 - 2t

Combining this with (4.13) we obtain

Using N'(t) = 0, (4.17) and the fact that g' increases, we deduce that

'(A) os:::: g'(t) = 2rifi1(t) < 2rifi1(A)
g '-": ifilt) ifi2('\)

for 0 < ,\ < Ao • Thus by (4.16) we have N'(A) > 0 when 0 < A < .\0 . This
shows that N(A) increases on [0, '\0) and is constant and equal to J(/)2 on
[,\0' 1 - g]. Hence (4.12) is established.
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At'\ = 1/2 we see from (4.20) that L1(f)2 = N(1/2) = r2. Now (1.3) and
(3.2) lead to the identity

(l - Q)(l - j(Q»
2(1 + Q)

Ql/2(l - j(Q»
1 + Q

which has the unique solution Q = 3 - 2 v2. We have thus established the
first four parts of the theorem.

For part (v) we carry the analysis of Case II above one step further. We
showed that g('\) coincides with A('\) when '\0 ~ ,\ ~ 1 - g. In terms of the
function J, this asserts that

Q(l - x2)f(Q) + x2 - Q2
j(x) = (l _ .Q)(x2 + Q) , 4.21)

IfQo = 0 = ,\0 then g('\) and A('\) coincide for all ,\ E [0, 1 - g]. In particular

o = g(O) = A(O) = g(g) - 2gs = j(Q) - Q .
1 - 2g 1 - Q

Thusj(Q) = Q = 3 - 2 v2 and (4.21) reduces to (4.4). This establishes the
"only if" assertion in part (v).

Finally we must show that iff = F is defined by (4.4) then the hypotheses
of the theorem are satisfied, Q = 3 - 2 v2 and Q o = O. There is no
difficulty in verifying Condition 1. For Condition 2 we have

and

8(F ) = (3 - 2 vi) w1
/
2(1 - w)

, W w2 + 3 - 2 v2 ' o~ w ~ 1,

8'(F ) = (3 - 2 v2){w3
- 3w2

- (3 - 2 vi)(3w - I)}
, W 2W1/2(W2 + 3 - 2 V2)2 '

o < w < 1. (4.22)

The cubic polynomial in the numerator of (4.22) has roots at w = 3 - 2 vi
and w = vi ± VJ. Only the first of these is in (0, 1) and hence must be
the unique point Q at which 8(F, w) attains its supremum. We also note that
(1.9) is easily seen to hold for the function F.

Iff = Fthen the corresponding function g(,\) is simply g(.:\) = (4 - 2 v2).:\.
Since this holds for 0 ~ ,\ ~ 1 - g we must have '\0 = Qo = O. This
completes the proof of part (v).
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5. THE FUNCTIONS I X I'"

In this section we shall restrict our attention to approximation of the
functions j;,(x) = Ix I"', ex > 0. These functions clearly satisfy Condition 1
and we now show that they satisfy Condition 2.

THEOREM 5.1. Let ex > °and let

D",(w) = 1 - w - (2ex + 1) w'" - (2ex - 1) w"'H (5.1)

for °~ w ~ 1. Then there exists a unique point D", E (0, 1) such that
Ll(j;,) = 8(f", , D",). Moreover, w = D", is the unique root in [0,1] of
D",(w) = 0.

Proof Since 0(/"" w) vanishes at w = °and w = 1, it will suffice to
show that (drdw) 0(/"" w) has a unique zero in (0,1). This is easily seen to be
equivalent to showing that D",(w) has a unique zero in (0,1). We have
D",(O) = 1 > 0, D",(l) = -4ex < °and

d
dw Do;(w) = -1 - w"'{ex(2ex + 1) w-1 + (ex + 1)(2ex - I)}

< -1 +w'" <0 (5.2)

for °< w < 1. Thus Do;(w) has a unique zero in [0, 1].

THEOREM 5.2. For °< ex < 00, D", is a continuous, strictly increasing
function of ex. Also we have

(i) lim",_co D", = 1,

(ii) lim",_o+ D", = T,

where T = .09077628 ... is the unique root in (0, 1) of

2(1 + T) + 1 - °1 _ T og T - .

Proof The function D",(w) defined in (5.1) is clearly a continuous function
of the two variables ex and w for (ex, w) E (0, (0) X [0,1]. Thus the subset
{(ex, w): D",(w) = O} = {(ex, D",): °< ex < oo} is closed and so D", is a
continuous function of ex.

For fixed ex E (0, (0), the estimate (5.2) shows thatD",(w) decreases on [0,1].
Hence the inequality D",(w) > °is equivalent to w < D", .

Next let 0 < 0: < f3 < 00 and let x be a real variable. Then the curve
(D",)-O: intersects the straight line

_ 2(1 + D",)x + 1
Y - 1-D

'"
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in exactly the two points x = 0 and x = ex. The case x = 0 is trivial and the
case x = ex follows immediately from DiQrx) = O. Since (Qrx)-1lJ is convex
we have

ex < X < 00,

or equivalently DiQrx ) > 0, ex < X < 00. In particular, if x = fJ then
DiQrx) > 0 or Q rx < Q{3 , as required.

The line

= 2(1 + r)x + I
y 1 - r

is clearly tangent to the curve r-X at x = O. Since r-X is convex,

-x 2(1 + r )x + I
r > l-r ' 0< x < 00,

and so Dx(r) > 0 for °< x < 00. Thus if r* = limrx->o+ Q rx (which must
exist since Q rx is monotone) then

0< r :':( r*. (5.3)

On the other hand the mean-value theorem shows that there exists a point
v E (0, ex) such that

(Q )-v(-l Q) = 2(1 + QJrx og rx 1 _ Q
rx

Taking limits on both sides of (5.4) and using (5.3), we obtain

-log r* = 2(1 + r*)
1 - r*

(5.4)

Thus r* = rand (ii) is proved.
To prove (i) we note that limrx->oo Q rx = a* exists by monotonicity and

satisfies a* :':( 1. If a* < 1 then taking limits as ex ---'>- 00 on both sides of

produces 1 - a* = 0, which is impossible. Thus a* = I and (i) is proved.

THEOREM 5.3. Let K be the unique real number in (1, (0) which satisfies
(1.11).
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(i) If tX = K then I U(O;f" , Q,,)I = ..::::l(tx),

(ii) if tX > K then I U(O;f" ,Q,,)I < ..::::l(tx),

(iii) if tX < K then I U(O;f" ,Q,,)[ > ..::::l(f,,).

Proof First of all we observe that by Theorem 5.2,

(5.5)

is a continuous function of tX for 0 < tX < 00. A simple computation shows
that (5.5) is positive at tX = 1 and negative at tX = 2. Thus it suffices to prove
that (5.5) has a unique zero at tX = K = 1.4397589 ....

Throughout the remainder of this proof it will be convenient to write Q
instead of Q" . If we set (5.5) equal to zero and use (3.1), (3.2) and (1.3) we
obtain

(1 + Q)(1 + Q") - (1 - Q)(1 - Q") = 2.Q1/2(1 - .Qa). (5.6)

By Theorem 5.1 we have D,,(Q) = 0 or equivalently

(1 - Q)
Q" = 2(1 + Q)tX + (1 - Q) .

Substituting (5.7) into (5.6) we obtain

(5.7)

2(1 + Q)2 tX + 2(1 - Q2) - 2(1 - Q2)tX = 4a:.Q1/2(1 + Q). (5.8)

If we divide both sides of (5.8) by (1 + Q) and write (1 - Q) as
(1 - Q1/2)(1 + Q1/2) then (5.8) reduces to

Q-1/2 = 2tX - 1. (5.9)

Since 0 < Q < 1, if follows from (5.9) that tX > 1. Next we substitute
Q = (2tX - 1)-2 into D,,(Q) = 0 and multiply both sides by (2tX - 1)2"+1 to
produce

(2tX - 1)2,,+1 - (2tX - 1)2,,-1 - (2tX + 1)(2tX - 1) - I = 0

or equivalently

tX
(2tX - 1)2"-1 = -- .

tX - 1
(5.10)

The function (2tX - 1)2"-1 increases on (1, 00) from 1 to 00 while tX/(tX - 1)
decreases from 00 to 1. Thus (5.10) has a unique solution K. Reversing the
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previous calculations we see that 0': = K is the unique value of 0': for which
(5.5) is zero.

We are now ready to begin our proof of Theorem D. First we consider the
case 0 < 0': < K. From Theorem B we have

II V - .t:. II", ?: LI(.t:.) (5.11)

for any symmetric transformation V. By Theorem 4.1 equality can occur in

(5.11) only if Vex) = V(x;.t:., [Jet) or Vex) = V(x;.t:., [Jet). But now Theorem
5.3 shows that if 0 < 0': < K then

sup I V(x;.t:. , [Jet) - j~(x)1 ?: I V(O;!et, [Jet) I > LI(j;,),
-1<"'(1

with an identical inequality for the conjugate transformation. This together
with Theorem 2.3 completes the proof of Theorem D part (ii).

Next we observe that if 2 ~ 0': < 00 then (1.9) is increasing. Thus for 0':
in this range Theorem D follows directly from Theorem C. We also note
that there is strict inequality in (4.3).

If K ~ 0': < 2 then.t:. fails to satisfy the additional hypothesis ofTheorem C.
However, the techniques used in the proof of Theorem 4.4 remain applicable.
The key difference is that the function g(..\) = f,.{x(..\)) defined by (4.7) no
longer has an increasing derivative on (0, 1 - ~. Rather, g'(..\) increases on
((2 - 0':)/4, 1 - g) but decreases on (0, (2 - 0':)/4). As before we can show
that on ((2 - 0':)/4, 1 - g) the function N(..\) (cf. (4.8)) has a relative maxi
mum at g ?: (2 - 0':)/4 and a relative minimum on (g, 1 - g). On the interval
(0, (2 - 0':)/4) a careful analysis shows that N(..\) has one extremum, a relative
minimum. We exclude the details. Theorem 5.3 then shows that (4.12) holds
and the proof of Theorem D is complete.

We remark that if K < 0': then equality holds in

(5.23)

if and only if x E Z([J,,,). However if K = 0': then there is also equality in (5.23)
at x = O. We suspect that this may provide a clue to the behavior of the
extremal transformations for 0': < K. Namely, that if 0': < K and Vet is a
symmetric transformation such that II Vet - .t:.lt", = EsC!et), then there is
equality in the inequality

I V,.{x) - j;,(x) I ~ EsCj;,), -1 ~ x ~ 1,

if and only if x E {-I, -" 0, " I} for some 'E (0, 1) which depends on 0:.

It seems likely that such a result holds at least for 0': sufficiently close to K.

At present, however, all that we can prove for ex < K is the inequality (1.12).
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We conclude our discussion of fa with a number-theoretic result which
follows simply from (1.11) and the Gelfond-Schneider Theorem (cf.
[5, pp. 80-83]).

THEOREM 5.4. The constant K is transcendental.

TABLE 1

K

2

3

4

5

10

100

0.236068

0.283079

0.333333

0.404214

0.458819

0.502528

0.636836

0.918863
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